
AD-A251 915

A STEP-BY-STEP GUIDE FOR PRODUCING ACEC REPORTS
USING THE DEC VAX ADA COMPILER

Major Stephen A. Davidson, USAF Reserves
Software Concepts Group
System Avionics Division

30 March 1992

Final Report for Period 15 July 1991 to 26 July 1991

Approved for Public Release; distribution unlimited.

DTIC
ELECTE

JUN 2 4 1992 J

AVIONICS DIRECTORATE
WRIGHT LABORATORY
AIR FORCE SYSTEMS COMMAND
WRTGflr-PAITERSON AIR FORCE BASE, OH 45433-6543

92-1665292e + . + J+;llt!Ulltltitllll

NOTICE
When Government drawings, specifications, or other data are used for any purpose
other than in connection with a definitely Government-related procurement, the United
States Government incurs no responsibility nor any obligation whatsoever. The fact
that the Government may have formulated or in any way supplied the said drawings,
specifications, or other data is not to be regarded by implication, or otherwise in any
manner construed, as licensing the holder, or any other person or corporation; or as
conveying any rights or permission to manufacture, use, or sell any patented invention
that may in any way be related thereto.

This report is-releasable to the National Technical Information Service (NTIS). At
NTIS, it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

STEVEN A. DAVIDSON, Major ROBERT L. HARRIS, Group Chief
U.S. Air Force Reserves Software Concepts Group

Avionics Logistics Branch

Accesion For

FOR THE COMMANDER NTIS CRA&
DTIC JAB [_]
Unarvnouiced Li

Justification

By
Distribution Ic

Availability Codes
DONNA M. MORRIS, Chief -

Avail and /or
Avionics Logistics Branch Dist Special
Systems Avionics Division

If your address has changed, if you wish to be removed from our mailing list, or if the
addressee is no longer employed by your organization, please notify WL/AAAF,
Wright-Patterson AFB, OH 45433-6543 to help us maintain a current mailing list.

Copies of this report should not be returned unless return is required by security
considerations, contractual obligations, or notice on a specific document.

Form Approved
REPORT DOCUMENTATION PAGE OMB No. 07040188

i. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

UNCLASSIFIED

a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION /AVAILABILITY OF REPORT
Approved for public release;

D. DECLASSIFICATION/ DOWNGRADING SCHEDULE Distribution unlimited

PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

WL-TM-91-128

a. NAME OF PERFORMING ORGANIZATION [6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

Wright Laboratory I Wbie) WL/AAAF

c. ADDRESS (City, State, and ZIPCode) 7b. ADDRESS (City, State, and ZIP Code)

Wright-Patterson AFB OH 45433-6543 Wright-Patterson AFB OH 45433-6543

a. NAME OF FUNDING/SPONSORING r b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION Avionics I (if applicable)

WL/ASD (AFSC) Directorate WL/AAF-3 In-House

c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT

Wright-Patterson AFB OH 45433-6543 ELEMENT NO. NO. NO ACCESSION NO.
63756D 2853 1 01 128530103

1. TITLE (Include Security Classification)

A STEP-BY-STEP GUIDE FOR PRODUCING ACEC REPORTS USING THE DEC VAX ADA COMPILER

2. PERSONAL AUTHOR(S)

Maj Steven A. Davidson, USAF Reserves

3a. TYPE OF REPORT 113b. TIME COVERED 114. DATE OF REPORT (Year, Month, Day) 115. PAGE COUNT

_,immarv I FROM 91,7-15T091-7-26 91-11-08 29

6. SUPPLEMENTARY NOTATION

7. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP Compiler Evaluation, Ada Language, DEC VAX Useage,
Software Tools

9. ABSTRACT (Continue on reverse if necessary and identify by block number)

This report provides explicit, step-by-step instructions on how to execute the Ada
Compiler Evaluation Capability software evaluation tool on a Digital Equipment
Corporation VAX computer. It provides the reader a "worked example" of execution
to help use this tool more quickly; and to improve the user's understanding of the
information provided in the tool's User Guide.

?0. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
WUNCLASSIFIED/JNLIMITED 0 SAME AS RPT. [DTIC USERS UNCLASSIFIED

'2a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL
Robert L. Harris (513)255-3947 WL[AA -3

FOREWORD

This report documents work completed July 1991 under the Aeronautical Systems

Division's Air Force Reserves project 90-432-LAB. The work was largely accomplished

during the two-week period of 15-26 July 1991. It provides a guide for using the Ada

Compiler Evaluation Capability (ACEC) software tool residing at WL/AAAF on its

VAX/4000 duster.

It was the intent of this work to provide an easier access to the ACEC, for research-

ers within the Avionics Logistics Branch (WL/AAAF), by documenting its use based on

"hands-on" experience. This report is particularly valuable for helping to solve the con-

siderable "mechanics" associated with using this enormously important tool.

Robert L. Harris, Chief

Software Concepts Group

WL/AAAF-3

ii

TABLE OF CONTENTS

Section 1 - Introduction

1. Background 1
2. The ACEC User's Guide 1
3. Purpose ... 1
4. Assumptions 1
5. Format Conventions 2
6. Flow Charts 3

Section 2 - Initial Set-Up Steps

1. Step 1 - Set Up Directories and Read ACEC
Distribution Tape 4

2. Step 2 - Create the Working Ada Library 4
3. Step 3 - Copy Files Into Work Area 4
4. Step 4 - Invoke the Ada Library 5
5. Step 5 - Identify Default Work Directory in

Primary .COM Files 5
6. Step 6 - Convert Ada Test Routines Into

Compilable Units 5
7. Step 7 - Math and Time Measurement Tests

of the Ada Compiler 6
8. Step 8 - Compile Utility Programs INCLUDE

and FORMAT 7

Section 3 - Compiling and Executing the Test Suite

1. Step 9 - Compile the Ada Test Routines 8
2. Step 10 - Alternative: Convert and Compile

Ada Test Routines In One Step 8
3. Step 11 - Move the COMPILE.LOG Output File

To the Work Directory 9
4. Step 12 - Delete all ".A" Files in the

Work Directory 9
5. Step 13 - Check COMPILE.LOG Output File

For Error Messages 9
6. Step 14 - Execute the Suite of Ada Test

Routines 9
7. Step 15 - Check RUN ACEC.LOG Output File

For Error Messages 10
8. Step 16 - Move RUN ACEC.LOG to the

Work Directory......................... 10
9. Step 17 - Produce EXTIME.DAT and CODESIZ.DAT

Data Files 10

iii

Section 4 - Running SSA

1. Purpose and Requirements of SSA 12
2. Step 18 - Identify the Default Work Directory

In MEDDATA CONSTRUCTOR. COM 12
3. Step 19 - Create SYSNAMES.TIM 12
4. Step 20 - Produce MED DATA.TIM 13
5. Step 21 - Create SYSNAMES.SIZ 13
6. Step 22 - Produce MED DATA.SIZ 13
7. Step 23 - Create CMPTIME.DAT 13
8. Step 29 - Create SYSNAMES.CMP 15
9. Step 30 - Produce MED DATA.CMP 16
10. Step 31 - Delete Unnecessary files In the

Work Directory 16
11. Step 32 - Rename MED DATA CONSTRUCTOR Output

Files To Prevent Confusion 16
12. Step 33 - Create SSA.TXT 17
13. Step 34 - Compile SSA 17
14. Step 35 - Execute SSA 17

Section 5 - Running Median

1. Purpose and Requirements of MEDIAN 19
2. Step 36 - Copy the Average-of-Performance Files

To the Work Directory 19
3. Step 37 - Identify Three Types of Analysis

Results of MEDIAN 19
4. MEDIAN - Execution Time Analysis 20
5. MEDIAN - Compilation Time Analysis............... 21
6. MEDIAN - Code Expansion size Analysis 22
7. Step 56 - Delete Unnecessary Files In the

Work Directory 26

FIGURES

Figure 1 - Using ACEC To Obtain SSA Output Files 27
Figure 2 - Using ACEC To Obtain MEDIAN Output Files.28

REFERENCES

iv

9 26: 11

Section 1

INTRODUCTION

1. Background.

The Ada Compiler Evaluation Capability (ACEC) is a software
tool developed by Boeing Military Airplanes (BMA) for the Avionics
Logistics Branch of the Avionics Directorate of Wright Laboratory
(WL/AAAF) at Wright-Patterson Air Force Base, Dayton, Ohio. The
ACEC measures the performance of an Ada compiler hosted on a
specific computer. The ACEC can compile and execute over 1100 Ada
test routines which exercise different features of the Ada
language compiler. Compilation speed, compiled code memory size,
and execution time are measured. The ACEC user can use this
information to compare performance between compiler/computer
combinations, isolate strengths and weaknesses of a
compiler/computer pair, and determine changes between releases of
a compiler (1).

2. The ACEC User's Guide.

BMA wrote a User's Guide (2) to help the user execute the
ACEC. The present version of the ACEC is difficult to execute.
It consists of numerous programs, and batch control files which
must be edited, compiled, and executed in a a specific sequence to
obtain the desired results. The User's Guide describes how to
execute ACEC on a "generic computer". It instructs the ACEC user
in general terms. However, the User's Guide does not provide
explicit, step-by-step instructions for executing the ACEC on a
specific computer system.

3. Purpose.

The purpose of this paper is to provide explicit, step-by-step
instructions on how to execute the ACEC on a Digital Equipment
Corporation (DEC) VAX main frame computer. This provides the
reader with a "worked example" of ACEC execution which will help
the reader use ACEC more quickly and improve the reader's
understanding of the information provided in the User's Guide.

4. Assumptions.

This paper makes the following assumptions:

a. Users Guide. The reader is expected to have a copy of
the User's Guide for ACEC, as described in Reference 2. This
paper makes frequent references to this document.

b. DEC Command Language (DCL). The reader is expected to be
somewhat familiar with DCL commands used on VAX computers. All
DCL commands necessary to obtain results are provided in this
paper. However, users who are not comfortable with DCL are
advised to obtain and refer to a DCL user's manual to better
understand the DCL commands used in this paper.

c. Ada Compilation System (acs). The .COM files on the ACEC
distribution tape are written such that the Ada compiler, linker,
and library are invoked by means of the VAX DCL utility "acs".
This utility software must be available on the VAX machine being
used to compile the Ada test routines and the analysis routines
(such as MEDIAN, or SSA).

d. Text File Editor. The reader is expected to be able to
use an on-line text editor to modify or create VAX command files
(.COM) written in ASCII text. The VAX text file screen editors
such as EDT or the Language Sensitive Editor (LSE) are
recommended. However, any text file editor (or word processor)
capable of reading and writing ASCII text files will do.

e. Ada Compiler Language. The reader is not required to be
familiar with the Ada Compiler Language to exercise ACEC using the
steps listed in this paper.

5. Format Conventions.

This paper will use the following format conventions to
promote understandability and minimize confusion:

a. Interactive On-Line Commands. Commands which are to be
entered at an on-line VAX terminal are indented and set apart from
the supporting text of each step by blank lines. Each command
appears on a separate line. The end of the line implies the
carriage return (RETURN) key is to be pressed. However, a few
exceptions to this convention occur when the command line is too
long to fit, as a single line, on the page of this document. For
those situations, the remaining portion of the command will be
printed immediately below and indented one space from the initial
portion of the command printed on the line above. An example of a
long, single command which is printed in this report on two lines
is:

submit/notify/log_file=compile.log/after=17:00
compile_acec.com

In this example, instead of pressing the RETURN key at the end of
the first line (after "17:00), press the space bar for one space
and continue typing the next indented line (starting with
"compile_" as a single command line on the terminal. Then press

2

the RETURN key at the end of the indented line (after ".COM") to
complete transmission of the command.

b. File Names. File names discussed in the text will be
typed in capitals (example: MEDIAN.COM).

6. Flow Charts.

Figures 1 and 2 are flow charts which diagram the
relationships among the Ada test program (.A and .ADA) files, the
executive (.EXE) files, the batch command (.COM) files, and the
desired data and output files. The flow charts also suggest the
sequence of steps the user must follow to obtain results. It is
very helpful to examine these flow charts while reading the
following sections. Sections 2 and 3 are applicable to the upper
half of both flow charts, which are the same. Section 4 is
applicable to the lower half of Figure 1 and Section 5 is
applicable to the lower half of Figure 2.

3

0

61 l

@06-0

a
OM

04F

U %4 a

0 4

0 14 1
'D 6 e'

be a 4 *.J u

*4 .3.0

8.4 14

3a

£LI-

44 4 v4

"rn-u I$I

0
00 c*-

(IV

-

I~ . -.00
dC 4j 4i V4' 1

1Ij
C .4

S4* 10 O I

am. amC am
I I R ,a

C I NLFi I* i .
40j 44* % L7 Z

0.4 64

40

a .0~

*64 0 0
00

6
M~~~~~ 4'- L 3 m . a

~M ~~03 ~ ~ 3b

Section 2

INITIAL SIT-UP STEPS

1. Step 1 - Set Up Directories and Read ACEC Distribution Tape.

First, a structure of sub-directories should be set up in the
user's area to facilitate better organization of files. It also
helps the user's get a better understanding of ACEC program
execution. The steps in this paper for executing ACEC are based
on the following directory and sub-directory structure. The top
directory is [davidson]. Of course, the reader's VAX account
name would be substituted for "davidson" in all the commands
presented in this paper. The sub-directories are set up by
entering the VAX commands:

create/dir [davidson.acec]
create/dir [davidson.acec.work]

Sub-directory [davidson.acec] contains the ACEC program files
which must be read in from the distribution tape or copied from
someone else's account who has already read the distribution tape
(see your VAX System Manager). Files in this directory are not
modified or executed. All modifications and executions are done
in the work area directory [davidson.acec.work]. This area is
considered a "scratch pad" area and is initially empty.

2. Step 2 - Create the Working Ada Library.

The Ada library used by the VAX Ada compiler is located in
[davidson.acec.work.adalib] and MUST be created using the acs
command by entering:

acs create library [davidson.acec.work.adalib]

3. Step 3 - Copy Files Into Work Area.

Copy the following files into [davidson.acec.work]. Go to the
[.acec] directory by entering:

set def [davidson.acec]

Enter the copy commands:

copy *.a [.work]*
copy *.ada [.work]*
copy *.com [.work]*
copy *.clock [.work]*
copy *.port [.work]*

4

copy ran32.ada [.workl*
copy mathdependent.dec [.work]*
copy sysnames.txt [.work]*

4. Step 4 - Invoke the Ada Library.

Identify the current Ada library. First, go down to the
[.work] directory (from the [davidson.acec] directory). Enter:

set def [.work]

Then identify the current Ada library by entering:

acs set lib [.adalib]

5. Step 5 - Identify Default Work Directory in Primary .COM Files

Using the Language Sensitive Editor (LSE) editor (or any
editor you like on the VAX), modify the following .COM files so
that the correct local directories are specified and the Ada
Library is identified.

COMPILE BASELINE.COM
COMPILE ACEC.COM
COMPILE TEST SUITE.COM
RUN ACEC.COM
MEDIAN.COM
MED DATA CONSTRUCTOR.COM
COMPILERUNACEC.COM

For example, based on the directory structure discussed in Steps 1
and 2, the following 2 lines should be added (or modified) to the
above .COM files:

set def [davidson.acec.work]
acs set library [davidson.acec.work.adalib]

These lines are always within the first two or three lines of
the .COM file. The .COM file, COMPILE RUN ACEC.COM, is a .COM
file I wrote and is not available from the ACEC tape. It is
explained later and is not needed until Step 49.

6. Step 6 - Convert Ada Test Routines Into Compilable Units.

Run COMPILEBASELINE.COM to compile the package GLOBAL and
package MATH. (See page 18 of the User's Guide.) Enter:

@compilebaseline

Running COMPILE BASELINE.COM also modifies every Ada test routine

5

on the distribution tape with a file extension ".A", into a test
routine with a file extension ".ADA", which will later be
compiled. Each Ada test routine is modified to add statements to
the routine which will either measure execution time and compile
time, if OPTION 3 is used (the default) or measure code expansion
size if OPTION 1 is selected. Steps 46 through 48 describe how to
switch to and use OPTION 1 in COMPILE BASELINE.COM . (Initially,
use the default setting, OPTION 3; do not modify
COMPILEBASELINE.COM

7. Step 7 - Math and Time Measurement Tests of the Ada Compiler.

a. Run SETUP TEST PROGRAMS.COM to compile and link MATHTEST,
DBL MATHTEST, TESTCALI, and TESTCAL2. (See page 18 of the User's
Guide.) SETUP TEST PROGRAMS.COM will also execute MATHTEST and
DBLMATHTEST. Enter:

@setup_test_programs

The results of executing MATHTEST and DBL MATHTEST will rapidly
flash by on the terminal screen. To get a hard-copy of the
results of this program (which checks the math functions of the
Ada compiler under test), the following command can be entered at
the terminal after SETUPTESTPROGRAMS.COM has been executed:

@runtest_programs/output=vaxtest.out

Results will be written to the file VAXTEST.OUT in the [.work]
directory. You can then view this file using an editor or route
the file to a printer. The printed results is 35 pages long.

b. The accuracy of the system clock routines used by the Ada
Compiler under test is checked after SETUP TEST PROGRA S.COM is
executed, by running TESTCAL1.EXE and TESTCAL2.EXE interactively
from an on-line VAX terminal.

Note: These programs each take 15 minutes of time to execute and
I was unable to interrupt or terminate their execution during this
15-minute period. (In other words, don't run these programs if
you're in a hurry to get other things done.)

Execute TESTCAL1.EXE by entering:

run testcall

Follow the directions on the screen. Similarly, TESTCAL2.EXE is
executed by entering:

run testcal2

6

8. Step 8 - Compile Utility Programs INCLUDE and FORMAT.

Run COMPILE TOOLS.COM to compile and link INCLUDE.ADA and
FORMAT.ADA . This MUST be done (once) before the test suites are
compiled using COMPILETESTSUITE.COM the first time. Enter:

@compiletools

7

Section 3

COMPILING AND EXECUTING THE TEST SUITE

1. Step 9 - Compile the Ada Test Routines.

a. Compile all the test programs using
COMPILE TEST SUITE.COM . This will take about 6.5 hours to run on
the AAAF VAX; run it as a batch job!!! Execution can be delayed
until after 5 pm by adding the "/after" clause to the submit
command. Enter (on a single line):

submit/notify/log file=compile.log/after=17:00
compile test suite.com

Results will be written to the file COMPILE.LOG in the top
directory (in this case, [davidson]), after compilation is
completed. COMPILE.LOG is necessary for the analysis programs
MEDIAN and SSA to provide information about compilation time of
the test programs. So, if you are interested in compilation time
analysis, don't delete COMPILE.LOG! Of course,
COMPILE TESTSUITE.COM will also generate the object files for
each test program and place them in the Ada library
[davidson.acec.work.adalib] and the executable *.EXE files will be
written to the [.work) directory. That's why it's important to
add the statements:

set def [davidson.acec.work]
acs set lib [davidson.acec.work.adalib]

to the first lines of COMPILE TEST SUIT.COM so that the Ada
compiler will know where to find the Ada files (created by
INCLUDE.ADA from the *.A files), and where to write the Ada object
files (in the Ada library) and the executable *.EXE files in the
[.work] directory.

b. After becoming more familiar with ACEC, you may want to
perform additional analysis using only selected Ada test routines.
It should be possible to edit COMPILETEST SUITE.COM to "comment-
out" compilation of all unwanted routines. (I have not yet tried
to do this.)

2. Step 10 - Alternative: Convert and Compile Ada Test Routines In
One Step.

If Steps 6 though 9 have been performed, Step 10 is not
necessary. However, Step 10 is discussed as an alternative method
to performing Steps 6 through 9, (after the user has a better
understanding of how ACEC works.) The .COM file COMPILE ACEC.COM
will perform most of the tasks in Steps 6 through 9 above,

8

automatically. Because this .COM file runs
COMPILE TEST SUITE.COM, COMPILE ACEC will also take about 6.5
hours to run on the AAAF VAX and should therefore be run only as a
batch job. To do this, enter (on a single line):

submit/notify/logfile=compile.log/after=17:00
compile_acec.com

Note that after Steps 6 and 8 have been done once, for a given
compiler, they do not need to be repeated. Also, there will be no
hard-copy results of MATHTEST and DBLMATHTEST in Step 7 by using
COMPILEACEC.COM

3. Step 11 - Move the COMPILE.LOG Output File To the Work
Directory.

After the batch job has completed execution, the COMPILE.LOG
file must be moved from the top directory to the [.work]
directory. A VAX command which can do this in a single step is:

rename [davidson]compile.log [davidson.acec.work]* *

4. Step 12 - Delete all ".A" Files in the Work Directory.

To conserve file space and tidy things up, you can delete all
the *.A files in the [.work] directory, but DO NOT delete the *.A
files in the [.acec] directory.

delete [davidson.acec.work]*.A; *

5. Step 13 - Check COMPILE.LOG Output File For Error Messages.

The COMPILE.LOG file will contain over 31,000 lines of output.
DON'T PRINT IT! However, you may want to check there are no
(serious) compilation errors by searching for the word "error" in
COMPILE.LOG using an editor or by entering the following VAX
command:

search/output=cmp_errors.dat/window=7 compile.log error

This will find all occasions of the word "error" in the file and
will write the line with "error" in it plus 3 lines before and 3
lines after (for a total 'window' of 7 lines) to the output file
CMPERRORS.DAT . Then CMP ERRORS.DAT can be viewed with an editor
or routed to a printer for a hard-copy.

6. Step 14 - Execute the Suite of Ada Test Routines.

a. RUN ACEC.COM will execute the test programs which have been
previously compiled by COMPILETESTSUITE.COM in Step 9 or

9

COMPILE ACEC.COM in Step 10. This will take 8.5 hours to execute
so it MUST also be run as a batch job!!! Execution can be delayed
until after 5 pm by adding the "lafter" clause to the submit
command. Enter:

submit/notify/after=17:00 run acec.com

Results will be written to the file RUN ACEC.LOG in the top
directory (in this case, [davidson]), after compilation is
completed. It's important to add the statements:

set def [davidson.acec.work]
acs set lib [davidson.acec.work.adalib]

to assure RUN ACEC.LOG will find all executable files for the test
programs created by Step 9 or Step 10 in the [.work] directory.

b. If COMPILE TEST SUITE.COM was edited to "comment-out"
selected Ada test routines as discussed in Step 9, these same Ada
test routines must also be "commented-out" of RUN ACEC.COM to
prevent errors caused by attempting to execute routines which were
not compiled.

7. Step 15 - Check RUNACEC.LOG Output File For Error Messages.

The RUN ACEC.LOG file will contain nearly 14,000 lines of
output. DON'T PRINT IT! However, you may want to check there are
no (serious) execution errors by searching for the word "error" in
RUN ACEC.LOG using an editor or by entering the
following VAX command:

search/output=execerrors.dat/window=7 runacec.log error

This will find all occasions of the word "error" in the file and
will write the line with "error" in it plus 3 lines before and 3
lines after (for a total 'window' of 7 lines) to the output file
EXEC ERRORS.DAT . Then EXECERRORS.DAT can be viewed with an
editor or routed to a printer for a hard-copy.

8. Step 16 - Move RUNACEC.LOG to the Work Directory.

After the batch job has executed, the RUN ACEC.LOG file must
be moved from the top directory to the [.work] directory. A VAX
command which can do this in a single step is:

rename [davidson]run acec.log [davidson.acec.work] *.*

9. Step 17 - Produce ZXTIME.DAT and CODESIZ.DAT Data Files.

10

Run FORMAT.COM using RUN ACEC.LOG as the input file to produce
the execution time data file and the code expansion size data
file. (See Page 84 of the User's Guide.)

@format run acec.log extime.dat codesiz.dat

The execution time information will be written to the EXTIME.DAT
file and the code expansion size data will be written to the
CODESIZ.DAT file. Choice of these output file names is arbitrary
but once chosen, these file names must be used consistently for
the information they represent in the steps which follow.

1i

Section 4

RUNNING SSA

1. Purpose and Requirements of SSA.

a. The Single System Analysis (SSA) program analyzes
relationships between test problems executed on one Ada compiler
system (see Page 83 of the User's Guide). To execute without
errors, SSA requires three input data files which contain
information about the test programs compiled in Step 9 (or Step
10) and executed in Step 14. (See Page 96 of the User's Guide.)

b. Use MED DATA CONSTRUCTOR.COM to generate two of the files
needed for SSA. These files to be generated are MEDDATA.TIM and
MEDDATA.SIZ

2. Step 18 - Identify the Default Work Directory In
MEDDATA CONSTRUCTOR.CON

First, edit MED DATA CONSTRUCTOR.COM to verify (or add) the
statements at the very beginning of the .COM file:

set def [davidson.acec.work]
acs set lib [davidson.acec.work.adalib]

This will assure the Ada library is set (in case you just logged
on again). Also, it assures execution will occur on files in the
[.work] directory.

3. Step 19 - Create SYSNAMS.TIM

To produce MED DATA.TIM, edit the file SYSNAMES.TXT to
generate SYSNAMES.TIM . (See Page 86 of the User's Guide.) The
file SYSNAMES.TIM should consist of the following lines of text:

time -- or "size" or "compile"
vax -- name of compiler system under analysis

-- Ada compiler on AAAF VAX
-- as of July 18, 1991
extime.dat

As with Ada, any text written after the "--" symbol is treated as
a comment. Up to 20 lines of comments may be added after the
second line which specifies the 'system-name". The system name
"vax" on the second line is arbitrary but once chosen, this name
must be used consistently to represent the "system-name" in the
steps which follow. The next line after the comments MUST be the

12

file name for execution time file (EXTIME.DAT) which was created
by FORMAT.COM in Step 17.

4. Step 20 - Produce MED_DATA.TIM

Generate MEDDATA.TIM by entering the command:

@med data constructor sysnames.tim

The file name parameter "sysnames.tim" MUST be the name of the
file created in Step 19.

5. Step 21 - Create SYSNAMES.SIZ

To produce MED DATA.SIZ edit the file SYSNAMES.TIM to generate
SYSNAMES.SIZ . (See Page 86 of the User's Guide.) The file
SYSNAMES.SIZ should consist of the following lines of text:

size -- or "time" or "compile"
vax -- name of compiler system under analysis

-- Ada compiler on AAAF VAX
-- as of July 18, 1991
codesiz.dat

As in Step 19, any text written after the "--" symbol is treated
as a comment. Up to 20 lines of comments may be added after the
second line which specifies the "system-name". The system name
"vax" on the second line must be the same as was selected in Step
19. The next line after the comments MUST be the file name for
the code expansion size file (CODESIZ.DAT) which was created by
FORMAT.COM in Step 17.

6. Step 22 - Produce MEDDATA.SIZ

Generate MEDDATA.SIZ by entering the command:

@med data constructor sysnames.siz

The file name parameter "sysnames.siz" MUST be the name of the
file created in Step 19.

7. Step 23 - Create CMPTIME.DAT

a. The third file needed for SSA is MEDDATA.CMP, the
compilation time data file. It can't be generated by using
MED DATA CONSTRUCTOR.COM with an input file from FORMAT.COM
because FORMAT.COM generates only the two files previously

13

discussed in Step 17. (See Page 85 of the User's Guide.) As a
result, MED DATA.CMP must be created using
MED DATA CONSTRUCTOR.COM which, in turn, uses a text data input
file, CMPTIME.DAT, that is constructed manually using information
in file COMPILE.LOG . The format for file CMPTIME.DAT, will be
similar to the format of EXTIME.DAT or CODESIZ.DAT and is
explained on Pages 96 through 98 of the User's Guide. The
following steps represent one way to build this file which appears
to yield reasonable results.

b. Step 24. To build the CMPTIME.DAT file, first strip out
all the text lines in COMPILE.LOG, created in Step 9, which
contain information on compilation time. These lines contain the
symbol "=>" . The following VAX command can be used to create a
file consisting of the desired information:

search/output=cmptime.dat compile.log

Using a text editor such as LSE, view the file CMPTIME.DAT which
has just been created. Notice that every line begins with the
text string:

"compile and link time in hundredths of a second for

which is followed by the test program name, the "=>" symbol, and
an integer number. Next, strip out the text string on every line
so that only the test program name, "=>" symbol, and integer
number remain. This can be easily done with most editors by
substituting a null string for the text string shown above.
Within the LSE editor, enter the command (at the LSE> prompt, all
on one line):

substitute "compile and link time in hundredths of a second
for if "

The result should be that every line in file CMPTIME.DAT contains
a test program name, beginning in Column 1. For example:

ACKER2 => 3674
ARTI => 17676
CFA => 5071

c. Step 25. Add a comment line as a new first line of the

file to describe the file contents:

-- compile and link time in seconds

d. Step 26. On what is now the second line, insert the

14

'start-of-information symbol', "(", symbol prior to the name of
the first test program listed. For example, if the first test
program name listed is ACKER2, the second line will now appear as:

(ACKER2 => 3674

e. Step 27. Insert a decimal point in front of the least 2
significant digits for every number in the file. For example, the
lines listed in Step 25 become:

(ACKER2 => 36.74
ARTI => 176.76
CFA => 50.71

This changes hundredths of seconds to seconds. It also changes
the numbers from integers to floating point numbers which MUST be
doiie to prevent an Ada exception (error) caused by a data type
mismatch when MEDDATA-CONSTRUCTOR.COM is executed.

f. Step 28. Add the 'end-of-information' symbol, ")", after
the last number in the file, at the end of the file. For example,
if the last test program name listed is TRIE, the last line in the
file will be:

TRIE => 53.70)

Note: It is not necessary to add commas to the ends of the lines
in file CMPTIME.DAT

8. Step 29 - Create SYSNAMES.CMP

To produce MED DATA.CMP, edit the file SYSNAMES.TIM to
generate SYSNAMES.CMP . (See Page 86 of the User's Guide.) The
file SYSNAMES.CMP should consist of the following lines of text:

compile -- or "time" or "size"
vax -- name of compiler system under analysis

-- Ada compiler on AAAF VAX
-- as of July 18, 1991
cmptime.dat

As in Step 19, any text written after the "--" symbol is treated
as a comment. Up to 20 lines of comments may be added after the
second line which specifies the "system-name". The system name
"vax" on the second line must be the same as was selected in Step
19. The next line after the comments MUST be the file name for
the compilation time file, (CMPTIME.DAT), which was created in

15

Steps 23 through 28.

9. Step 30 - Produce MEDDATA.CMP

Generate MED DATA.CMP by entering the command:

@med data constructor sysnames.cmp

The file name parameter "sysnames.cmp" MUST be the name of the
file created in Step 29.

10. Step 31 - Delete Unnecessary files In the Work Directory.

Steps 20, 22, and 30 will also generate three VAX versions of
the files:

MED DATA CONSTRUCTOR.EXE
MED DATACONSTRUCTOR.LIS
MDCERRORS.TXT

If all goes well and MED DATA.TIM and MEDDATA.SIZ were produced
and look reasonable, these other files listed above can be
deleted. (MED DATA.SIZ will contain all zeros initially but this
will not cause an execution error. Steps 46 through 52 show how
to get non-zero values for this file.)

delete [davidson.acec.work]med data constructor.exe;*
delete [davidson.acec.worklmed_dataconstructor.lis;*
delete [davidson.acec.work]mdc errors.txt;*

11. Step 32 - Rename MED DATA CONSTRUCTOR Output Files To Prevent
Confusion. -

Rename the three files now created by MED DATA CONSTRUCTOR.COM
to prevent confusion later when MED DATACONSTRUCTOR.COM is used
to produce similar files for MEDIAN.COM Rename the following
files:

MED DATA.TIM
MED DATA.SIZ
MED DATA.CMP

to the new file names:

MED DATA SSA.TIM
MED DATA SSA.SIZ
MEDDATASSA.CMP

This can be easily done (at this point in the initial sequence of
steps) by using the following single VAX command:

16

rename med data.* med data ssa.*

12. Step 33 - Create SSA.TXT

Using an editor, create the file SSA.TXT Insert the
following two lines of text (starting in Column 1):

s=vax
i=med data ssa.tim, med data ssa.siz, med data ssa.cmp

The value after the "s=" MUST be the same system name as app,ars
in the second line of the MED DATA SSA.* files. The second line
of file SSA.TXT specifies the input files for SSA which have been
created in Steps 20, 22, and 30. The order of the files is
important.

13. Step 34 - Compile SSA

Compile and link SSA.ADA This is more easily done using
a .COM file, such as COMPILE SSA.COM which I wrote. File
COMPILE SSA.COM consists of the following lines of text (starting
in Column 1):

$ set verify
$ set def [davidson.acec.work]
$ acs set lib [davidson.acec.work.adalib]
$ ada/nowarn/nocheck/optimize=time ssa
$ acs link ssa

Execute COMPILESSA.COM by entering:

@COMPILESSA

14. Step 35 - Zxecute SSA

a. Prepare to execute SSA. Copy over the four input template
files required by SSA.EXE from the [.acec] directory into the
[.work] directory. (See Page 99 of the User's Guide.) These four
files are:

LF.SSA
OPT.SSA
RTS.SSA
STYLE.SSA

This can be easily done by entering the single VAX command:

copy [davidson.acec]*.ssa [davidson.acec.work]*.*

17

b. Verify the following files are now in the [.work]
directory:

SSA.EXE
SSA.TXT
MED DATA SSA.TIM
MED DATA SSA.SIZ
MED DATA SSA.CMP
LF. SSA
OPT.SSA
RTS.SSA
STYLE.SSA

This can be done by entering the following two VAX commands from
within the [.work] directory:

dir *ssa*.*
dir *.ssa

Take appropriate action if any of these files are not in the
[.work] directory.

c. Execute SSA.EXE by entering:

run ssa

If SSA executes properly, it will produce at least three output
files with a file name equal to the name of the Ada Compiler
System specified in the input file SSA.TXT (see Step 33) and an
extension name of .REP, .CON, or .SUM . A fourth file with the
extension .MIS is produced if the flag for the missing data report
is set to "true". This is done by adding a third line, "m=true",
to the SSA.TXT file (see Page 92 through 96 of the User's Guide).
In our case, the system name is "vax" so the following reports are
produced:

VAX.REP
VAX.CON
VAX.SUM

VAX.REP, the body of the SSA report, is a very large file. If
routed to a printer, over 200 pages of text will be printed. The
user should consider viewing the file with an editor first, to
assure the appropriate analysis was performed, before routing this
file to the printer. VAX.CON is a table of contents for the main
report in VAX.REP and. VAX.SUM is a summary of the report in
VAX.REP. If routed to a printer, about 7 and 16 pages of text
will be printed, respectively.

18

Section 5

RUNNING MEDIAN

1. Purpose and Requirements of MEDIAN.

The MEDIAN analysis program compares sets of performance data
from at least two different compilation systems (see Page 83 of
the User's Guide). If there is only one Ada compiler system
available, the data files provided on the ACEC distribution tape,
which contain the average of the performance of five trial systems
analyzed during the development of ACEC, can be used in place of a
second actual system Ada compiler (see Page 87 of the User's
Guide). The User's Guide implies this information is contained in
one file:

DATA.ADA

In truth, this average-of-performance information is contained in
three separate files:

TIME.ADA
SIZE.ADA
COMPTIME.ADA

These files are similar to the files produced by FORMAT.COM, as
discussed in Step 17 (EXTIME.DAT and CODESIZ.DAT for TIME.ADA and
SIZE.ADA) and the compilation time data file built by hand in Step
23 through Step 28 (CMPTIME.DAT for COMP TIME.ADA).

2. Step 36 - Copy the Average-of-Performance Files To the Work
Directory.

Copy the files discussed in the preceding paragraph from the
[.acec] directory to the [.work] directory. This can be done by
entering the VAX commands:

copy (davidson.acec]time.ada [davidson.acec.work]*
copy [davidson.acec]size.ada [davidson.acec.work*
copy [davidson.acec]comp_time.ada [davidson.acec.work]*

3. Step 37 - Identify Three Types of Analysis Results of MEDIAN.

Use the MED DATACONSTRUCTOR to generate new MEDDATA.* files
that will contain 2 Ada compiler systems, VAX and the Average of 5
Ada compilers from the data files discussed in Step 36. Depending
on the type of analysis desired (execution time, code expansion
size, or compilation time), MEDIAN requires at least one of the

19

following three input files to be prepared which contain
performance data on (at least) two systems. These three files
are:

MED DATA.TIM (for execution time analysis)
MED DATA.SIZ (for code expansion size analysis)
MED DATA.CMP (for compilation time analysis)

4. MEDIAN - Execution Time Analysis.

For execution time analysis, follow Step 38 through Step 41.
First, it will be necessary to prepare a new SYSNAMES.TXT-type
file similar to the ones discussed in Step 19, Step 21, or Step
29.

a. Step 38 - Create VAXAVG.TIM To produce MED DATA.TIM,
edit the file SYSNAMES.TXT to generate VAXAVG.TIM . (See Page 86
of the User's Guide.) The file VAXAVG.TIM should consist of the
following lines of text:

time -- or "size" or "compile"
vax -- name of System 1 under analysis

-- Ada compiler on AAAF VAX
-- as of July 18, 1991
extime.dat
average -- name of System 2

-- Average of 5 trial Ada compilers
time.ada

As with Ada, any text written after the "--" symbol is treated as
a comment. Up to 20 lines of comments may be added after the
second line which specifies the "system-name". The system name
"vax" on the second line is arbitrary but once chosen, this name
must be used consistently to represent the "system-name" in the
steps which follow. The next line after the comments MUST be the
file name for execution time file which was created by FORMAT.COM
in Step 17 (EXTIME.DAT). The next line after the execution time
file for System 1 must be the System 2 name (average) to be
compared to System 1 (vax). Up to 20 more comment lines can
follow. The next non-comment line MUST be the file name for the
execution time file for System 2 (TIME.ADA) which was either
created by FORMAT.COM (for another system compiler tested) or, as
in this case, copied as a data file (TIME.ADA) from the ACEC
distribution Lape.

b. Step 39 - Produce MEDDATA.TIM Generate MEDDATA.TIM by
entering the command:

20

@meddataconstructor vaxavg.tim

The file name parameter "vaxavg.tim" MUST be the name of the file
created in Step 37.

c. Step 40 - Copy MEDDATA.TIM Into MED DATA.ADA To produce
the execution time analysis report using MEDIAN, copy
MED DATA.TIM to a "dummy" file called MED DATA.ADA using the VAX
command:

copy meddata.time meddata.ada

d. Step 41 - Execute MEDIAN to Obtain Execution Time Analysis.
Now execute MEDIAN to produce the execution time report by
entering the VAX command:

@median mediantim.out

MEDIAN will read the execution time input data from the "dummy"
file MED DATA.ADA . The report will be written to the output
file, MEDIANTIM.OUT, which may be viewed using the editor or
printed. The printed report is over 50 printed pages long. (But
also, a blank page appears between every printed page, causing the
printer to produce over 100 pages of output! This is a
program/printer compatibility problem which should be corrected.)

5. MEDIAN - Compilation Time Analysis.

For compilation time analysis, follow Step 42 through Step 45.

a. Step 42 - Create VAXAVG.CMP . To produce MED DATA.CMP,
edit the file VAXAVG.TIM, produced in Step 38, to generate
VAXAVG.CMP . (See Page 86 of the User's Guide.) The file
VAXAVG.CMP should consist of the following lines of text:

compile -- or "time" or "size"
vax -- name of System 1 under analysis

-- Ada compiler on AAAF VAX
-- as of July 18, 1991
cmptime.dat
average -- name of System 2

-- Average of 5 trial Ada compilers
comp_time.ada

As in Step 38, any text written after the "--" symbol is treated
as a comment. Up to 20 lines of comments may be added after the
second line which specifies the "system-name". The system name
"vax" on the second line must be the same as was selected in Step
37. The next line after the comments MUST be the file name for

21

the compilation time file (CMPTIME.DAT) which was created in Steps
23 through 28. The next line after the compilation time file for
System 1 must be the System 2 name (average) to be compared to
System 1 (vax). Up to 20 more comment lines can follow. The next
non-comment line MUST be the file name for the compilation time
file for System 2 (COMPTIME.ADA) which was either created by
following Steps 23 through 28 (for another system compiler tested)
or, as in this case, copied as a data file (COMPTIME.ADA) from
the ACEC distribution tape.

b. Step 43 - Produce MEDDATA.CMP. Generate MEDDATA.CMP by

entering the command:
@med data constructor vaxavg.cmp

The file name parameter "vaxavg.cmp" MUST be the name of the file
created in Step 42.

c. Step 44 - Copy MED DATA.CMP Into MED DATA.ADA . To produce
the compilation time analysis report using MEDIAN, copy
MED DATA.TIM to the "dummy" file called MEDDATA.ADA using the VAX
command:

copy med data.cmp med data.ada

d. Step 45 - Execute MEDIAN to Obtain Compilation Time
Analysis. Now execute MEDIAN to produce the compilation time
report by entering the VAX command:

@median mediancmp.out

MEDIAN will read the compilation time input data from the "dummy"
file, MED DATA.ADA . The report will be written to the output
file, MEDIANCMP.OUT, which may be viewed using the editor or
printed. The printed report is over 50 printed pages long. (But
also, a blank page appears between every printed page, causing the
printer to produce over 100 pages of output! This is a
program/printer compatibility problem which should be corrected.)

6. MEDIAN - Code Expansion size Analysis.

For code expansion size analysis, follow Step 46 through
Step 55. Ideally, the Steps 38 through 41 could be modified
appropriately, as was done in Steps 42 through 45 for compilation
time analysis, to obtain code expansion size analysis.
Unfortunately, for the DEC Ada Compiler on the AAAF VAX,
additional "work-around" steps are necessary. This is because in
Versions 1.5 and earlier of the DEC Ada, the label'ADDRESS
attribute (of the Ada Language) incorrectly always returns the
value zero. ACEC relies on the label'ADDRESS attribute to measure

22

code expansion sizes. As a result, using ACEC in its default
mode, demonstrated in the previous 45 steps, yields all zeros for
code expansion size information. (See Pages 52, 53, 62, and 63 of
the User's Guide. Also, the reader can view files RUN ACEC.LOG,
CODESIZ.DAT created by FORMAT.COM in Step 17, or MED DATA SSA.SIZ
created by Steps 21, 22, and 32, to verify this point.) As a
"work-around", a utility assembler function, GETADR.MAR on the
ACEC distribution tape, can be used to obtain code addresses, in
place of the label'ADDRESS attribute of the Ada Language.
However, as the User's Guide explains on Page 63, this "work-
around" affects the execution time measurements, making them
unreliable.

a. Step 46 - Identify the Need to Re-compile Ada Test
Routines. To summarize, the User can not obtain both (reliable)
execution time analysis and code expansion size analysis from a
single execution of ACEC. After execution time data and analysis
has been performed, if code expansion size data and analysis is
desired, the COMPILE BASELINE.COM file must be modified and all
the ACEC test programs must be re-compiled and re-executed. Steps
47 through 53 demonstrate how to do this.

b. Step 47 - Copy Additional Utility Routines Into the Work
Area. Copy the following distribution tape files with file
extension .SIZ in the [.acec] directory to the [.work] directory
by entering the following VAX commands:

copy [davidson.acecjinittime.siz [davidson.acec.workj*.*
copy [davidson.acec]startime.siz [davidson.acec.work]* *
copy [davidson.acec]stoptimeO.siz [davidson.acec.work] *.*
copy [davidson.acec]stoptime2.siz fdavidson.acec.work]*.*
copy [davidson.acec]global.siz [davidson.acec.work] *.*

Also copy the assembler function with extension .MAR by entering:

copy [davidson.acec]getadr.mar [davidson.acec.work] *.*

c. Step 48 - Edit and Execute COMPILE BASELINE.COM To Select
"OPTION 1". Using an editor, modify the file COMPILE BASELINE.COM
to "comment-out" statements for 'OPTION 3 --- .CLOCK' by changing
"$ " to "$!" in Columns 1 and 2 of these lines. Next, "un-

comment" the command statements for 'OPTION 1 --- .SIZ', changing
V$! " to "$ " by deleting the "!" without replacement. There are
12 command lines and one comment line which remains a comment
line. The comment line begins with the date "$! 18 December
1989, ... "

d. Step 49 - Re-compile and Execute All Ada Test Routines.
Copy the Ada test routines with the ".A" extension back into the
work directory:

copy [davidson.acec]*.a (davidson.acec.work]*

23

Re-run COMPILE BASELINE.COM to modify the Ada test routines into
compilable units as was done in Step 6. This will produce a new
set of compilable Ada test routines with the ".ADA" extension.
Compile and run the entire ACEC suite again by submitting a .COM
file. I wrote a special .COM file to compile and execute ACEC in
a single over-night session (which runs about 15 hours on the AAAF
VAX computer. The .COM file I wrote is called
COMPILERUNACEC.COM and is submitted by entering:

submit/notify/after=17:00 compilerunacec.com

The compile time results will be written to the file
COMPILE RUN ACEC.LOG and the execution and code expansion size
results will be written to the file RUN ACEC.LOG. Both files will
be in the top directory ([davidson]) the next day.

The following is a copy of COMPILERUNACEC.COM which I wrote:

$ set verify
$ set def [davidson.acec.work]
$ acs set lib [davidson.acec.work.adalib]

$! Rename the directory [davidson.acec.work] here
$! and in all other .COM files to a local directory
$! usable for testing.

$! This .COM file will compile and run all
$! ACEC test problems. If the full set of test problems
$! is used (normally done, by default), the Main-Frame
$! VAX (in AAAF) takes about 6.5 hours to compile all test
$! programs using COMPILE TEST SUITE.COM and about
$! 8.5 hours to execute all test programs using
$! RUNACEC.COM

$! Needless to say, this should be done overnight
$! by submitting this .COM file as a batch job after 5 pm!!!
$! This is done by entering the following command
$! at the terminal:

$! submit/notify/after=17:00 compile run acec.com

$! First compile the test suite and write the result to
$! file COMPILERUNACEC.LOG in the top directory.

24

$ @compile test suite

$! Next, execute the test suite. The run-time results will
$! be written to file RUNACEC.LOG in the top directory.

$ submit/notify RUNACEC.COM

e. Step 50 - Move RUN ACEC.LOG to the Work Directory. Move

RUN ACEC.LOG to the [.work] directory using the VAX command:

rename (davidson]run acec.log [davidson.acec.work] *.*

f. Step 51 - Produce EXTIME.DAT and CODESIZ.DAT Data Files.
Run FORMAT.COM again, as was done in Step 17 to re-generate
CODESIZ.DAT from the new RUN ACEC.LOG file which should now have
non-zero values for the code expansion size for every
test program. Enter the VAX commands:

set def [davidson.acec.work]
@format run acec.log extime.log codesiz.dat

g. Step 52 - Create VAXAVG.SIZ. To produce MED DATA.CMP, edit
the file VAXAVG.TIM, produced in Step 38, to generate VAXAVG.SIZ
(See Page 86 of the User's Guide.) The file VAXAVG.SIZ should
consist of the following lines of text:

size -- or "time" or "compile"
vax -- name of System 1 under analysis

-- Ada compiler on AAAF VAX
-- as of July 18, 1991
codesiz.dat
average -- name of System 2

-- Average of 5 trial Ada compilers
size.ada

As in Step 38, any text written after the "--" symbol is treated
as a comment. Up to 20 lines of comments may be added after the
second line which specifies the "system-name". The system name
"vax" on the second line must be the same as was selected in Step
37. The next line after the comments MUST be the file name for
the code expansion size file (CODESIZ.DAT) which was created in
Step 51. The next line after the code expansion size file for
System 1 must be the System 2 name (average) to be compared to
System 1 (vax). Up to 20 more comment lines can follow. The next
non-comment line MUST be the file name for the code expansion size
file for System 2 (SIZE.ADA) which was either created by
FORMAT.COM (for another system compiler tested) or, as in this

25

case, copied as a data file (SIZE.ADA) from the ACEC distribution
tape.

h. Step 53 - Produce MED DATA.SIZ. Generate MEDDATA.SIZ,

similar to Step 43, by entering the VAX command:

@med-data constructor vaxavg.siz

i. Step 54 - Copy MEDDATA.SIZ Into MEDDATA.ADA. To produce
the code expansion size report using MEDIAN, copy MED DATA.SIZ to
the "dummy" file called MEDDATA.ADA by entering the VAX command:

copy med data.siz med-data.ada

j. Step 55 - Execute MEDIAN To Obtain Code Expansion Size
Analysis. Now execute MEDIAN using code expansion size data in
MED DATA.ADA by entering the VAX command:

@median mediansize.out

The report will be written to the file MEDIANSIZE.OUT which can be
viewed using an editor or printed. Even though this is memory
size (in terms of bytes or bits), the resulting report still
indicates the values are a measure of time. This is confusing and
should be corrected.

7. Step 56 - Delete Unnecessary Files In the Work Directory.

Steps 41, 45, and 55 will also generate three sets of the
files:

MED DATA CONSTRUCTOR.EXE
MED DATA CONSTRUCTOR.LIS
MDCERRORS . TXT

If all goes well and MED DATA.TIM and MED DATA.SIZ were produced
and look reasonable, these other files listed above can be
deleted.

delete [davidson.acec.work]med data constructor.exe;*
delete [davidson.aced.worklmed data constructor.lis;*
delete [davidson.acec.work]mdc errors.txt;*

26

References

1. Tom Leavitt, Kermit Terrell, Barbara Deeker-Lindsey, Ada
Compiler Evaluation Capability (ACEC), an Overview (Draft),
Boeing Military Airplanes, Wichita, Kansas, April 24, 1989.

2. Tom Leavitt, Ada Compiler Evaluation Capability (ACEC),
Technical Operating Report (TOR), User's Guide Release 2.0, Boeing
Military Airplanes, Wichita, Kansas, D500-12470-1, February 8,
1990.

27

